0%

37. Sudoku Solver

37. Sudoku Solver

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class Solution {
public:
void solveSudoku(vector<vector<char>>& board) {
for(size_t i = 0; i < 9; ++i)
{
for(size_t j = 0; j < 9; ++j)
{
auto& num = board[i][j];
if(num != '.')
{
col[num - 49][j] += 1;
row[i][num - 49] += 1;
block[i / 3][j / 3][num - 49] += 1;
}
}
}
solve(board, 0, 0);

}

private:
int col[9][9]{0};
int row[9][9]{0};
int block[3][3][9]{0};
bool valid(size_t i, size_t j, int target)
{
if(col[target][j] || row[i][target] || block[i / 3 ][j /3][target])
return false;
else
return true;
}
bool solve(vector<vector<char>>& board, int i, int j)
{
if(i == 9) return true;
if(j == 9)
return solve(board, i + 1, 0);
if(board[i][j] != '.')
return solve(board, i, j + 1);

for(char c = '1'; c <= '9'; ++c)
{
auto& num = board[i][j];
if(valid(i, j, c - 49))
{
num = c;
col[num - 49][j] = row[i][num - 49] = block[i / 3 ][j /3][num - 49] = 1;
if(solve(board, i, j + 1))
return true;
col[num - 49][j] = row[i][num - 49] = block[i / 3 ][j /3][num - 49] = 0;
num = '.';
}
}
return false;
}
};

T(n) : O(N)

也是一个回溯的问题,但与combined sum不同的是这个回溯只得使用return 来作为停止条件,而combined sum中则以添加到vector中为结束。

review
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Solution {
public:
void solveSudoku(vector<vector<char>>& board) {
for(int i = 0; i < 9; ++i)
for(int j = 0; j < 9; ++j)
{
if(board[i][j] != '.')
{
int num = board[i][j] - '0' - 1;
cols[j][num] = 1;
rows[i][num] = 1;
blocks[i / 3 + j / 3 * 3][num] = 1;
}
}
backTrack(board, 0, 0);
}
private:
int cols[9][9]{};
int rows[9][9]{};
int blocks[9][9]{};
bool backTrack(vector<vector<char>>& board, int i, int j)
{
if(j == 9)
return backTrack(board, i + 1, 0);
if(i == 9)
return true;
if(board[i][j] != '.')
return backTrack(board, i, j + 1);
for(int k = 1; k <= 9; ++k)
{
if(cols[j][k - 1] || rows[i][k - 1] || blocks[i / 3 + j / 3 * 3][k - 1])
continue;
board[i][j] = k + '0';
cols[j][k - 1] = 1;
rows[i][k - 1] = 1;
blocks[i / 3 + j / 3 * 3][k - 1] = 1;
if(backTrack(board, i, j + 1))
return true;
board[i][j] = '.';
cols[j][k - 1] = 0;
rows[i][k - 1] = 0;
blocks[i / 3 + j / 3 * 3][k - 1] = 0;
}
// 当所有填法都不行时,说明这种出问题了,就得回溯取消上面的步骤
return false;
}
};