0%

64. Minimum Path Sum

64. Minimum Path Sum

动态规划
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
size_t m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
dp[0][0] = grid[0][0];
for(size_t i = 0; i < m; ++i)
{
for(size_t j = 0; j < n; ++j)
{
if(i == 0 && j == 0)
continue;
if(i == 0)
dp[i][j] = dp[i][j - 1] + grid[i][j];
else if(j == 0)
dp[i][j] = dp[i - 1][j] + grid[i][j];
else
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[m - 1][n - 1];
}
};

T(n) : O(m * n)

S(n) : O(m * n)

尝试对S(n) 优化

观察代码,发现每次用到的数据只有dp[i][j], dp[i][j - 1]和dp[i - 1][j],考虑dp[i][j], dp[i][j - 1]合并到一个一维数组,剩下的再生产一个一维数组。

参考unique path中的方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
size_t m = grid.size(), n = grid[0].size();
int* cur = new int[n];
int* pre = new int[n];
for (size_t i = 0; i < m; ++i)
{
for (size_t j = 0; j < n; ++j)
{
if (i == 0 && j == 0)
cur[j] = grid[i][j];
else if (i == 0)
cur[j] = cur[j - 1] + grid[i][j];
else if (j == 0)
cur[j] = pre[j] + grid[i][j];
else
cur[j] = min(pre[j], cur[j - 1]) + grid[i][j];
}
swap(cur, pre);
}
return pre[n - 1];
}
};
T(n) : O(m * n)

S(n) : O(2 * n)

再优化

pre[j] 与 cur[j] 可以合并

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
size_t m = grid.size(), n = grid[0].size();
int* cur = new int[n];
for (size_t i = 0; i < m; ++i)
{
for (size_t j = 0; j < n; ++j)
{
if (i == 0 && j == 0)
cur[j] = grid[i][j];
else if (i == 0)
cur[j] = cur[j - 1] + grid[i][j];
else if (j == 0)
cur[j] = cur[j] + grid[i][j];
else
cur[j] = min(cur[j], cur[j - 1]) + grid[i][j];
}
}
return cur[n - 1];
}
};

T(n) : O(m * n)

S(n) : O(n)

review
1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<int> dp(n, 0);
dp[0] = grid[0][0];
for(int i = 1; i < n; ++i)
dp[i] = dp[i - 1] + grid[0][i];
for(int i = 1; i < m; ++i)
for(int j = 0; j < n; ++j)
dp[j] = (j > 0 ? min(dp[j], dp[j - 1]) : dp[j]) + grid[i][j];
return dp.back();
}
};