0%

101. Symmetric Tree

101. Symmetric Tree

recursively
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
return isTwoTreesSymmetric(root->left, root->right);
}
private:
bool isTwoTreesSymmetric(TreeNode* lTree, TreeNode* rTree)
{
if((!lTree && rTree) || (!rTree && lTree))
return false;
if(!lTree && !rTree)
return true;
if(lTree->val == rTree->val)
return isTwoTreesSymmetric(lTree->left, rTree->right) && isTwoTreesSymmetric(lTree->right, rTree->left);
return false;
}
};
iteratively queue
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
queue<TreeNode*> q;
q.push(root);
q.push(root);
while(!q.empty())
{
auto t1 = q.front();
q.pop();
auto t2 = q.front();
q.pop();
if(!t1 && !t2) continue;
if(!t1 || !t2) return false;
if(t1->val != t2->val) return false;
q.push(t1->left);
q.push(t2->right);
q.push(t1->right);
q.push(t2->left);
}
return true;
}
};
iteratively stack
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
stack<TreeNode*> s;
s.push(root);
s.push(root);
while(!s.empty())
{
auto t1 = s.top();
s.pop();
auto t2 = s.top();
s.pop();
if(!t1 && !t2) continue;
if(!t1 || !t2) return false;
if(t1->val != t2->val) return false;
s.push(t1->left);
s.push(t2->right);
s.push(t1->right);
s.push(t2->left);
}
return true;
}
};

上述方法从root开始比较了两次,不好,下面改改

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if(!root)
return true;
queue<TreeNode*> q;
q.push(root->left);
q.push(root->right);
while(!q.empty())
{
auto p1 = q.front();
q.pop();
auto p2 = q.front();
q.pop();
if(!p1 && !p2)
continue;
if(!p1 || !p2)
return false;
if(p1->val != p2->val)
return false;
q.push(p1->left);
q.push(p2->right);
q.push(p1->right);
q.push(p2->left);
}
return true;
}
};