0%

199. Binary Tree Right Side View

199. Binary Tree Right Side View

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
if(!root)
return {};
vector<int> ret;
queue<TreeNode*> q;
q.push(root);
while(!q.empty())
{
ret.push_back(q.back()->val);
for(int i = 0, sz = q.size(); i < sz; ++i)
{
auto p = q.front();
q.pop();
if(p->left)
q.push(p->left);
if(p->right)
q.push(p->right);
}
}
return ret;
}
};

T(n) : O(n) S(n) : O(k)(k为每层数)

discussion的方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> ret;
rightView(ret, root, 0);
return ret;
}
private:
void rightView(vector<int>& ret, TreeNode* node, int depth)
{
if(!node)
return;

if(depth == ret.size()) // 如果当depth != ret.size()时return,则会导致传递的终止,不行,当不等时候,那就继续遍历下去,说不定下面一层又轮到你了
ret.push_back(node->val);

rightView(ret, node->right, depth + 1);
rightView(ret, node->left, depth + 1);
}
};

O(logn) 总体思路是每层只添加一个,然后仅当每层没添加时才会添加进去,而层数通过ret的大小来判定,由于是从右到左遍历,因此每层添加的一定是最右的