0%

面试题 08.12. 八皇后

面试题 08.12. 八皇后

BackTrack
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> ret;
vector<int> pos(n);
vector<string> tmp;
// 从最后一行往前走
backTrack(ret, pos, n - 1, n, tmp);
return ret;
}
private:
void backTrack(vector<vector<string>>& ret, vector<int>& pos, int curLine, int n, vector<string>& tmp)
{
// 如果所有行都走完了,就push入结果
if(curLine < 0)
{
ret.push_back(tmp);
return;
}
vector<int> avl(n, 0); // 记录已经被占用的位置
// 遍历之前行,获取到不能放置的位置
for(int i = n - 1; i > curLine; --i)
{
avl[pos[i]] = 1;
int diff = i - curLine;
if(pos[i] - diff >= 0)
avl[pos[i] - diff] = 1;
if(pos[i] + diff < n)
avl[pos[i] + diff] = 1;
}
for(int i = 0; i < n; ++i)
{
if(avl[i]) // 如果位置被占用了,就跳过
continue;
pos[curLine] = i;
tmp.push_back(getLine(i, n));
backTrack(ret, pos, curLine - 1, n, tmp); // 进入下一行
tmp.pop_back();
}
return;
}
string getLine(int pos, int n)
{
string line;
int j = 0;
for(j; j < pos; ++j)
line += ".";
line += "Q";
while(++j < n)
line += ".";
return line;
}
};
Solution

以上对于已经占用的位置需要消耗掉O(n)的时间复杂度,但是可以观察到

同一条斜线上的行和列之差或之和相等且独一无二,因此只需要记录之差和之和即可判断是否在同一斜线,时间复杂度降为O(1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> ret;
vector<int> pos(n);
col = vector<int>(n, 0);
backTrack(ret, pos, n - 1, n);
return ret;
}
private:
vector<int> col;
unordered_set<int> lx;
unordered_set<int> rx;
void backTrack(vector<vector<string>>& ret, vector<int>& pos, int curLine, int n)
{
if(curLine < 0)
{
ret.push_back(getBoard(pos, n));
return;
}
for(int i = 0; i < n; ++i)
{
if(col[i] || lx.find(i - curLine) != lx.end() || rx.find(i + curLine) != rx.end())
continue;
pos[curLine] = i;
col[i] = 1;
lx.insert(i - curLine); // 记录向左上方的斜线,斜线上行列之差相等
rx.insert(i + curLine); // 记录向右上方的斜线,斜线上行列之和相等
backTrack(ret, pos, curLine - 1, n);
col[i] = 0;
lx.erase(i - curLine);
rx.erase(i + curLine);
}
return;
}
vector<string> getBoard(vector<int> pos, int n)
{
vector<string> ret;
for(auto& p : pos)
ret.push_back(getLine(p, n));
return ret;
}
string getLine(int pos, int n)
{
string line;
int j = 0;
for(j; j < pos; ++j)
line += ".";
line += "Q";
while(++j < n)
line += ".";
return line;
}
};

T(n) : O(n!)

S(n) : O(n)

使用位运算优化S(n)为O(1)

左边斜线就是上几行皇后位置左移行之差次,右边斜线就是上几行皇后位置右移行之差次。

对于每行,获得左斜线就是左边值左移,右斜线就是右边值右移。即可

具体看解析

x & (x - 1)将最低位1置0

x & -x就是最低位1的位置

二进制中相反数就是按位取反再加一,也就是说 x & -x = x & (~x + 1),显然可以运算后只有最低位1可以保持1,其他都是0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> ret;
vector<int> pos(n);
backTrack(ret, pos, n - 1, n, 0, 0, 0);
return ret;
}
private:
void backTrack(vector<vector<string>>& ret, vector<int>& pos, int curLine, int n, int col, int lx, int rx)
{
if(curLine < 0)
{
ret.push_back(getBoard(pos, n));
return;
}
auto alP = ((1 << n) - 1) & (~(col | lx | rx)); // 1表示有空位,为了下面的循环方便
while(alP)
{
int lastZero = alP & (~alP + 1);
int po = __builtin_ctz(lastZero); // gcc __buildin__函数,获取末尾0的数量,这里不能获取前导0,因为前导0会根据int为32位计算
alP &= alP - 1; // 去除最后一个1,继续
pos[curLine] = n - po - 1;
backTrack(ret, pos, curLine - 1, n, col | lastZero, (lx | lastZero) << 1, (rx | lastZero) >> 1);
}
return;
}
vector<string> getBoard(vector<int> pos, int n)
{
vector<string> ret;
for(auto& p : pos)
ret.push_back(getLine(p, n));
return ret;
}
string getLine(int pos, int n)
{
string line;
int j = 0;
for(j; j < pos; ++j)
line += ".";
line += "Q";
while(++j < n)
line += ".";
return line;
}
};

T(n) : O(n!)

S(n) : O(1)